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A semi-active device for the vibration control of machinery foundations or for ride
control of vehicles is proposed. A semi-active damper utilising dry friction is employed, with
balance logic, a class of sequential damping, being used to minimise the force transmitted.
The friction force applied to the mass is controlled so as to cancel the spring force, which
is only possible when these forces act in opposite directions. Otherwise, the friction force
must be set to zero, which is quite achievable, unlike the case of a viscous damper. The
friction damper can be controlled so as to mimic the addition of a viscous damper. Both
the ideal case of instantaneous switching and a more realistic model with finite switching
time are studied. The results of numerical simulations show that a successful
implementation of this strategy could produce a significant reduction of the forces
transmitted to the foundation by a machine subject to a rotating imbalance force or of the
mean square acceleration in a car riding on a randomly profiled road.

7 1998 Academic Press Limited

1. INTRODUCTION

Isolation of passenger and cargo from terrain induced shock and vibration is the important
task of the suspension of any ground vehicle. Also the reduction of machinery transmitted
loads to the supporting structure is usually obtained by suspension units consisting of
springs and dampers. Most suspensions units are passive units (not requiring any external
power). The vibration isolation performance of most passive suspensions, both linear and
non-linear, is rather limited. Their transmissibility factors show that low damping gives
good isolation at high frequency but poor resonance characteristics, whilst higher damping
results in good resonance isolation at the expense of high frequency performance.

By using hydraulic or pneumatic power supply and servoactuators controlled by
feedback signals, it is possible to produce active suspensions. In this case the optimum
transmissibility has no resonance amplification and the suspension performance is superior
to any passive system throughout the frequency range [1–4]. But they are more complex,
expensive and less reliable than the passive suspensions.

A compromise between passive and active types are ‘‘semi-active’’ suspension systems
[3–9]. They have an active damper in parallel with a passive spring. The damping
characteristics are controlled merely by modulation of fluid-flow orifices or of friction
forces, based on a scheme involving feedback variables. For practical reasons it is
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important that the feedback signals be relative displacement and relative velocity across
the suspension, since these quantities can be measured directly even for a moving vehicle.

In the case of semi-active suspensions with sequential damping, as introduced by
Federspiel [10] the damper force is zero or rather very small as long as the sprung mass
is moving away from its static equilibrium position, suddenly increases when the stroke
changes from bound to rebound and then gradually decreases when the system is returning
to the static equilibrium position. The basic idea of this strategy is to balance the elastic
force by the damping force in order to reduce or even to cancel the forces transmitted
through the suspension as long as the spring force and damper force act in opposite
direction.

Some mathematical models for sequential damping have been proposed and analyzed
[11–14] showing better vibration isolation properties than the passive damping, both for
deterministic and random excitations.

In this paper a more general mathematical model for sequential damping is presented
and in particular the free and forced vibrations for the case of sequential dry friction
[14, 15]. In practice the balancing of a linear spring force can be achieved in a semi-active
system by means of a continuously variable viscous damping [7] or by means of a spring
loaded friction brake, the proposal of the authors. This is possible only when the relative
displacement and velocity are of opposite sign. Theoretically one can consider an
instantaneous switching of the friction force form zero to the demanded value but a more
realistic model should take into account a finite switching time [16]. A controllable friction
damper with finite switching time has been also reported to the produce a satisfactory
reduction of the response displacement in a semi-active seismic isolation system [17].

2. SEQUENTIALLY DAMPED OSCILLATORS

The aim of the sequential damping logic is to oppose the spring force and thus reduce
the acceleration of the body compared to the passive case. One strategy is to attempt to
achieve zero acceleration. It is only possible to balance the spring and damper forces when
relative displacement and relative velocity have opposite sign.

The sequential damping force will therefore be considered as a function of the relative
displacement x and relative velocity ẋ, having the general form:

D(x, ẋ)= cẋ+[1−sgn xẋ)]d1(x)d2(ẋ)/2, ce 0, (2.1)

where d1 and d2 are functions of displacement and velocity respectively. d1(x)e 0,
ẋd2(ẋ)e 0 and d1(x)= d2(ẋ)=0 if and only if x= ẋ=0. Moreover, d1(x) and d2(ẋ) are
real continuous functions (except possibly at ẋ=0) and monotonous on each x and ẋ
semi-axis.

The motion of a sequentially damped SDOF oscillator having sprung mass M, linear
spring force Kx, and absolute displacement x1 is given by

Mẍ1 +D(x, ẋ)+Kx=P(t), (2.2)

where P(t) is the exciting force and x1 = x+ x0, x0 being the input displacement. When
the sprung mass is a machine acted on by an imbalance force P(t), the transmitted force
to the foundation is

F(t)=−[D(x, ẋ)+Kx]. (2.3)
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For an imposed displacement x0(t) of the unsprung mass, as in a car suspension, the
absolute acceleration of the sprung mass is

ẍ1 =−(1/M)[D(x, ẋ)+Kx], (2.4)

where x is the relative displacement x0 − x1.
In both cases, the vibration isolation problem implies the reduction of the elastic and

damping force resultant across the suspension. In a semi-active design, this can be achieved
by controlling the damping force so as to balance the elastic force when these forces act
in opposite direction, i.e., when xẋQ 0, and by setting the damping force to a minimum
value (possibly zero) when xẋq 0. From (2.1) and (2.3) it is obvious that a perfect
semi-active balance is obtained if

cẋ+ d1(x)d2(ẋ)=−Kx for xẋQ 0. (2.5)

The simplest physically realizable solution of the functional equation (2.5) is obtained for

c=0, d2(ẋ)= sgn (ẋ), d1(x)=K=x=. (2.6)

In order to reduce body acceleration, energy dissipation should take place only when the
friction force opposes the spring force i.e., when xẋQ 0. This can be achieved by a
controllable friction damper. For a friction coefficient m, the normal force Fp , applied on
the friction plates, must be controlled by a servoactuator such that

Fp =62a(K/m)=x=
0

ON i.e., when
OFF i.e., when

xẋQ 0,
xẋq 0,7 (2.7)

where 2a is the gain. The reason for this notation for the gain becomes apparent when
equation 2.12 is derived.

The damping characteristic of the system is ‘‘on-off’’ and is given by

FD (x, ẋ)=62aK=x= sgn ẋ
0

for
for

xẋQ 0,
xẋq 0.7 (2.8)

Equations (2.4) and (2.8) show that in the ON condition complete balance is achieved with
a=0·5. In order to avoid damper ‘lock up’ (no motion across the damper) which could
occur when ẋ=0, x$ 0 and ẍ=0, it is sufficient to ensure that friction force produced
in this condition is less than the spring force:

2aD=x=QK=x=, (2.9)

or aQ 0·5. In simulations complete balance (a=0·5) was considered and lockup ignored
with the understanding that in an experimental case a would have to be slightly less than
0·5.

Equation (2.8) implies an instantaneous switching between the ‘‘on’’ and ‘‘off’’ settings
of the friction damper. A more realistic model must take into account a finite switching
time [8], [16, 17]. a is now replaced by a demanded value adem since the force achieved is
not in general that demanded by the logic. The variation of the damping force Fd is
described by the first order equations:

TcF� d +Fd =2ademKx if xẋQ 0, (2.10)

TcF� d +Fd =0 if xẋQ 0, (2.11)

where Tc is the time constant for the switch.
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The equation of motion (2.2) with the addition of a low level of viscous damping to
the damping term of equation (2.12) can when xẋQ 0 be written in the form:

Mẍ1 + cminẋ+ ademK=x= sgn ẋ+(1− adem )Kx=P(t), (2.12)

where FD in equation (2.12) has been split into two terms, one a dissipative term and the
other a (negative) spring term. Equation (2.12) can be regarded as describing the motion
of an oscillator having the dissipative characteristic D1(x, ẋ)= cminẋ+ ademK=x= sgn ẋ and
the elastic characteristic E(x)= (1− adem )Kx. This form shows the ‘‘weakening’’ of the
spring term caused by partial balance, since the spring term is reduced in magnitude by
a factor 1− adem . This reduces the natural frequencies of the system.

By using the following notation v=zKM, zmin = cmin2zKM, t=vt and introducing
a as a unit of length,

y(t)= x(t/v)/a, y'(t)=dy/dt, z(t)=P(t/v)/aMv, (2.13)

the equation (2.12) can be written in the following dimensionless form:

y0+ d1(y, y')+ (1− adem )y= z(t)− z̈in, (2.14)

where the dimensionless absolute deflection is y+ zin and

d1(y, y')=2zminy'+ adem =y= sgn y', adem Q 1 (2.15)

is the dissipative characteristic of the system.
In what follows, for convenience the dimensionless parameters will be referred to by the

corresponding physical parameters (e.g., t as time, y as relative displacement, d(y, y') as
damping force, c(y)= (1− adem )y as elastic force). In order to study the vibration isolation
performances of semi-active dampers with dry friction, both single-degree-of-freedom and
two-degrees-of-freedom systems will be considered. These model machinery foundations
and car suspensions respectively.

3. RESPONSE WITH SEMI-ACTIVE DRY FRICTION AND IMPOSED HARMONIC
MOTION

The behaviour of the damping force as the relative displacement y is varied throughout
an harmonic cycle is important from the practical point of view since most testing machines
provide such a relative motion between the mounting ends of the shock absorber. For an
imposed cycle motion

y(t)=Y0 sin nt, (3.1)

the total damping force

d(y, y')=2zminy'+ [1−sgn (yy')]adem =y= (3.2)

Figure 1. Damping force versus (a) displacement (b) velocity.
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varies as shown in Figures 1a and 1b in terms of the relative displacement y(t) and relative
velocity y'(t), respectively. zmin and adem were taken as 0·25 and 0·45 respectively. The energy
loss per cycle is

Dw=g
2p− n

0

d(y, y')y' dt=2Y2
0 (pnzmin + adem ). (3.3)

Form equation (3.3) one can see that the dissipative effect of the additional semi-active
dry friction could be very important for low frequency imposed harmonic motions and
becomes less important when the frequency of the imposed motion increases. The relative
damping coefficient zeq of a linear system which provides the same energy loss per cycle
as the semi-active damper is given by

zeq = zmin (1+ adem/pndmin ). (3.4)

For the ‘‘on-off’’ damping characteristic zeq Q 1/pn since adem Q 1. The maximum absolute
value (peak value) of the damping force is reached in a time interval

Dt=(1/n)[p/2−arctg adem /nzmin ], (3.5)

from the instantaneous switch of the dry friction force from zero to its demanded value
and is given by

d
 = =d(y, y')=max =2zminY0nz1+ a2
dem /(nzmin )2. (3.6)

Since adem Q 1 the peak value of an ‘‘on-off’’ semi-active dry friction damper force will be
less than 2Y0. For the same energy loss per cycle, the peak value of the ‘‘on-off’’ semi-active
damper force should be p times greater than the peak value of the linear equivalent
damping force, independent of the cycle frequency.

4. FREE VIBRATIONS

The phase trajectories of the system (2.14) can be determined analytically for the
‘‘on-off’’ damper. In this case, the free vibrations of the system are described by the Cauchy
problem

g
F

f

y'1 = y2,

y1(0)= y0
1 ,

y'2 =−adem =y1= sgn y2 − (1− adem )y1,

y2(0)= y0
2 .

h
J

j
(4.1)

The analytical expressions of the phase trajectories are

g
F

f

y2
1 + y2

2 = y02
1 + y02

2

(1− adem )y2
1 + y2

2 = (1− adem )y02
1 + y02

2

if

if

y0
1y0

2 e 0, y0
2 $ 0,

y0
1y0

2 e 0, y0
1 $ 0.

h
J

j
(4.2)

These trajectories are piecewise circular and elliptic curves as shown in Figure 2 for various
initial conditions. The ratio between two successive maxima or minima of the free motion
relative displacement y(t) is constant and is given by r=1/(1− adem ). Therefore, in this
case one can define a decrement of the free motion which characterizes the system damping
in the same way as the logarithmic decrement does for linear systems.
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Figure 2. Free oscillations, various initial conditions.

5. SHOCK ABSORBING PROPERTIES

In this section the shock absorbing properties of a single-degree-of-freedom vibration
isolation system with sequential dry friction will be compared to those of an optimal linear
system. It can be shown that the optimum value of the relative damping coefficient z which
minimizes the peak value ŷ01 of the transmitted force in the case of a single-degree-of-free-
dom linear isolation system excited by a Dirac impulse d(t) is z0 =0·25 [12]. Since the first
sequence of the motion described by equation (2.14) for z(t)= d(t) and initial conditions
y(0)= y'(0)=0 is always governed by the linear equation, one can obtain the same
optimum value for ŷ01opt taking zmin = z0 in the sequential damping characteristic (2.15). The
effect of the additional sequential damping is then observed by comparing the evolution
of the motion after the first peak was reached.

In Figures 3a and 3b there are plotted the time histories of the free vibrations of the
passive (optimal linear) system with z=0·25 and of the semi-actively controlled system
with the same viscous linear damping and semi-active dry friction (zmin =0·25, adem =0·45).
As shown in Figure 3b, the free motion of the system with semi-active dry friction looks
like that of an almost critically damped linear system. Nevertheless, the r.m.s. value of the
transmitted force from the sprung mass to the system base is significantly lower than in
the case of a critically damped linear system. For example, in the case of the passive system
with z=0·7, the peak value of the transmitted force is ŷ01 =1·4, i.e., 1·7 times greater than
the optimum value ŷ01opt =0·82 [12].

6. HARMONIC EXCITATION

6.1.  

The steady state solution of the equation (2.14) with harmonic excitation z(t)=Z sin nt

has been determined by numerical integration using Newmark’s method [18]. In Figures
4a and 4b there are plotted the time histories of the transmitted force y01 (t) and of the
damping force d(y, y') in the case of the passive system with z=0·25 and of the semi-active
system with zmin =0·25, adem =0·45, for Z=0·2 and n=1 (i.e., when the excitation
frequency is equal to the undamped natural frequency of the system). As one can see, the
additional semi-active dry friction leads to an important reduction of the transmitted force
(46% for the peak and 54% for the r.m.s. value) for only 3% increase of the damping
force peak value.
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Figure 3. Free oscillations versus time with z=0·25, adem =0·45 for (a) passive and (b) semi-active cases.

6.2.   

Since one is interested in the reduction of the loads transmitted from the spring mass
to the system base, the force transmissibility factor will be compared for the passive and
semi-active systems considered above. For the passive system the acceleration ratio T(n)
is given by

T(n)= ŷ01 Z=z2ỹ1/Z, (6.1)

where ŷ01 and ỹ01 are the peak and r.m.s. values of y01 (t), respectively.
In the case of a semi-active system one can define similar frequency response functions

which, in general, depend on both the amplitude and frequency of the input:

T
 (n, Z)= ŷ01 /Z, T	 (n, Z)=z2ỹ01 /Z. (6.2)

Since the equation of motion (2.14) of the system with semi-active dry friction damping
is piecewise linear, the frequency response functions (6.2) are independent of the input
amplitude Z, but they are not equal as in case of a passive system.

In Figure 5 are plotted the frequency response function T(n) for the passive system with
z=0·25 and for the semi-active system with zmin =0·25, adem =0·45. From these diagrams
an important resonance shifting toward the lower frequency range results when semi-active
dry friction damping is added. This effect is very convenient when a low frequency tuned
vibration isolation system is sought, as usual in machinery foundations. Another important
feature of semi-active damping is the remarkable reduction of the r.m.s. force
transmissibility factor in the resonance range of the initial passive system. For nq 2 and
same value of z the transmissibility factor of both linear and non-linear systems are
practically equal. This aspect is very important since for low values of z passive suspensions
are very efficient vibration isolators in the higher frequency range.



50

0.3

–0.3
25

τ

N
on

-d
im

 f
or

ce
 (

y 1
")

39

0.1

–0.1

28 31 33 36

0.2

0.0

–0.2

42 44 47

0.15

–0.15N
on

-d
im

 d
is

pl
 (

δ)

0.05

–0.05

0.10

0.00

–0.10

(a)

5025 30 35 40 45

5025 3928 31 33 36 42 44 47

(b)

4.0

2.0

ν

T

1.0

1.0 2.0 3.00.0

. .   . 678

Figure 4. Harmonic excitation, n=1. Damping forces (d) and transmitted force (y01 ) versus time with z=0·25,
adem =0·45 for (a) passive and (b) semi-active cases.

7. VEHICLE SUSPENSION WITH SEMI-ACTIVE DRY FRICTION

7.1.  

For the quarter-car model with viscous damping and semi-active dry friction, as shown
in Figure 6, the equations of motion are:

M2ẍ2 +D(x, ẋ)+K2(x)=0,

M1ẍ1 −D(x, ẋ)−K2(x)+K1(x1 − r)=0, (7.1)

where

D(x, ẋ)=g
F

f

cmin (ẋ)+2ademK2=x= sgn (ẋ)

cminẋ

if

if

xẋQ 0,

xẋq 0,
h
J

j
(7.2)

Figure 5. Acceleration ratio T versus forcing frequency. - - -, Passive case with z=0·25; —, Semi-active
case with zmin =0·25, adem =0·45.



K1

r

M1
x1

K2

M2

x2

Cminα

-    679

and r(t) is the excitation induced by the road profile for a constant vehicle speed. Using
the notation of equation (2.15) and

g=M2/M1, x=K1/K2, y(t)= x(t/v)/a, z(t)= r(t/v)/a, (7.3)

equations (7.1) can be written in the dimensionless form

y02 + d(y1, y')+ y=0,

y01 − gd(y, y')− g(y)+ gx(y1 − z)=0, (7.4)

where

d(y, y')=2zmin (y')+ [1−sgn (y)(y')]adem =y=. (7.5)

Equations (7.4) and (7.5) assume instantaneous switching of the damper force from zero
to its demanded value 2adem =y= and conversely. However physically constructed, the control
system will have to adjust continuously. A finite switching time is inevitable and the
switching process should be included in the analysis.

The hydraulically operated system studied by the authors is shown in schematical form
in Figure 7. An actuator controlled by a servo valve applies a desired normal force to the
friction plates, one of which is fixed to the sprung mass and the other to the unsprung
mass. The semi-active damper force can be used in an ‘‘on-off’’ manner (zmin =0) when
the following first order equations hold:

tcd'+ d=2ademy if yy'Q 0, (7.6)

tcd'+ d=0 if yy'q 0, (7.7)

where tc =vnTc . The switch response can be improved by introduction of a derivative
term. The switching dynamics are now governed by following equation:

tcd'+ d=2adem [Tcy'+ y]. (7.8)

7.2.  

Parameters values assumed were typical of a UK family saloon with four occupants:
M2 =230 kg, M1 =23 kg, K2 =23 kN/m, K1 =153 kN/m. The natural frequency of the
sprung mass in bounce is 1·59 Hz and the wheel hop frequency 13·9 Hz. The r.m.s.
response of the quarter car to sinusoidal inputs was obtained as a function of frequency.

Figure 6. Quarter-car model.
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Figure 7. Semi-active friction damper and hydraulic circuit.

Road input amplitude was scaled to produce the same peak velocity at all frequencies,
which is approximately the case for road profiles. The demanded a was 0·5 (i.e., full spring
cancellation).

A comparison was made of the response of the system under semi-active control with
the passive case, assuming a dual valued damper (low on closure, high on recoil). Figure
8a shows the comparison for r.m.s. body (sprung mass) acceleration over a period of 10 s
and Figure 8b the dynamic tyre force coefficient. (The integration period was 12 s with
the first two seconds of the response being ignored). Added viscous damping was
considered. Note that with system considered by the authors the additional ‘viscous’
damping does not require another damper but can be introduced simply by control of the
normal force applied to the friction plates. For Figures 8a and 8b the added viscous
damping ratio in the semi-active friction case is 0·1. This low value produces vibration
isolation superior to the passive case over the entire frequency range, with the exception
of the secondary resonance, where the semi-active system is no worse. (The reason for the

Figure 8. (a) Body r.m.s. acceleration sinusoidal input, constant peak velocity; ——, passive, z=0·25; —-—,
semi-active z=0·1; 2DOF: (b) dynamic tyre force coefficient, sinusoidal input, constant peak velocity; ——,
passive, z=0·25; —-—, semi-active z=0·1; 2DOF.
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Figure 9. (a) Body acceleration, sinusoidal input, constant peak velocity; —,passive, z=0·25; —-—,
semi-active z=0·2; 2DOF: (b) dynamic tyre force coefficient, sinusoidal input, constant peak velocity; —,
passive, z=0·25; —-—, semi-active z=0·2; 2DOF.

peak occurring at 7 Hz rather than around 13 Hz is due to the constant peak velocity road
input). However, Figure 8b shows that for this value of added viscous damping the
semi-active system exhibits a large tyre force fluctuation around 7 Hz. The first peak is
actually about half that in the passive case, so the overall performance of the semi-active
system in regard to tyre force is not actually much worse than that in the passive case.
However, a larger value of added damping appears desirable.

The corresponding plots for an added damping ratio of 0·2 are given in Figures 9a and
9b. The secondary tyre force resonance is now controlled (Figure 9b) but the acceleration
of the sprung mass (Figure 9a) is somewhat increased by the doubling of the added viscous
damping. Nevertheless, the performance is still distinctly superior to the passive case, as
one would expect with a (semi) active system. The response of the semi-active system at
the first resonant frequency is about half that of the passive system.

The behaviour of the friction damper at the resonant condition is indicated in Figure
10 for the case of tc =0·05. The damper cancels the spring force over a quarter cycle, and

Figure 10. Harmonic road input. 1·5 Hz. Damping (——) and spring (–––) force, tc =0·05, 2DOF.
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Figure 11. Random road input, 2DOF (a) passive damper z=0·1, 0·4; (b) continuously variable viscous
damper 0·1Q zQ 0·4 (balance logic control); (c) friction damper with added viscous damping z=0·2 (balance
logic control); switch time constant 10 ms in each case.

is then switched off in the next quadrant. The net acceleration is halved. Finally, an
integrated white noise input was used to represent the road displacement.

In Figure 11 the body acceleration achieved with a semi-active dry friction damper under
full balance control (adem =0·5) is compared with that produced by a conventional passive
viscous damper and also with a continuously variable viscous damper. If the hydraulic
system of Figure 7 is employed, the lower value of the semi-active damper force is zero,
and the limit on the upper value is set by the maximum permissible spring compression.
The passive damper was given a value of 0·1 on closure and 0·4 on recoil. All three systems
were taken to have the same time constant (10 ms). In the passive case the switch is between
the recoil and the closure settings. The body acceleration for the continuously variable
damper is 12% lower than in the passive case, while for the semi-active friction damper
with added viscous damping ratio of 0·2, the reduction is 29%. For a single-degree-of-free-
dom model with sinusoidal relative motion and instantaneous switching, a reduction of
approximately 50% in body acceleration is predicted (Figures 4a and 4b as discussed

Figure 12. Generated friction force (—) versus spring force (---); time constant 10 ms, adem =0·5. Zero added
viscous damping, 2DOF.
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in section 6.1). With a two-degree-of-freedom model, random excitation and finite
switching times the reduction is around 30%.

The balance logic is evident in Figure 12 in which the spring and damper ‘forces’
(actually accelerations) are compared for the semi-active damper. The damper force
envelope approximates to a mirror image of the spring force. However, because of higher
frequency velocity components, the velocity reverses frequently, which means that the
damper has to turn on and off several times between two successive zero crossing of the
relative displacement. The result is a higher frequency oscillation of the actuator and spring
of the friction damper. The comparison between this figure and Figure 10 for a sinusoidal
input is a valuable one. The indication is that with pseudo-random inputs, to improve
performance, the damper may need to be fed a filtered velocity signal.

8. CONCLUSIONS

1) As has been established by other workers, the acceleration experienced by a system
controlled by a semi-active damper can be appreciably lower than that of a passive system.

2) A controlled friction device is superior to a continuously variable viscous damper
since the former is able to generate a damping force when the relative velocity between
body and wheel (or machine and foundation) is very low.

3) The appeal of a semi-active friction damper is that it can be utilized to achieve
virtually any desired control logic by appropriate adjustment of the force on the plates.
This enables hybrid logic to be employed if desired.

4) The work presented here indicates that when used with ‘‘balance’’ logic the addition
of a modest level of simulated viscous friction, the r.m.s. sprung mass acceleration at the
fundamental frequency of the passive system can be reduced by nearly 50%. For random
inputs the reduction is about 30%.

5) The same logic can be applied to the reduction of the dynamic tyre force since the
force fluctuation on the wheel is simply that on the sprung mass.

9. FURTHER WORK

A key factor is the performance of such a system in practice. This is the object of the
current research effort. The system being built is that of Figure 7, namely a hydraulically
operated actuator, controlled by a servo valve, applying a demanded force to friction
plates. One concern is the variation of friction force with relative velocity and possible
occurence of slip stick oscillations. Friction plate wear will also be studied. Closed and
open loop control strategies will be employed.
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APPENDIX: NOTATION

C damping constant
Fd damping force
K suspension stiffness
M, M2 sprung mass
M1 unsprung mass
T acceleration ratio
Tc time constant
x relative displacement
x1, x0 absolute, imposed displacement
y non-dimensional relative displacement
y1 absolute non-dimensional displacement
Y0 amplitude of imposed motion
Z amplitude of excitation
a balance parameter
x spring ratio
d total damping force
g mass ratio
n forcing frequency/natural frequency
tc non-dimensional constant
z viscous damping ratio


